
KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

Image Processing, Pattern Recognition 99

Introduction
Face detection is the first step in solving face analy-
sis problems such as person identification, emotion,
gender, and age recognition. The practical interest to
these problems focuses on the fact that they are much
needed in digital cameras, smartphones and other
devices. They are also widely used in smart security
systems and are highly demanded in photo control ser-
vices through social media.
So far, efforts of researchers are aimed at developing
face detection algorithms in the wild with considering
to three degrees of head motion freedom. The
complexity of the problem consists in a wide variety
of face expressions, conditions, and postures, in which
a person can be captured, as well as in a smaller facial
area compared to the total picture surface.
However, we can offer quite a lot of scenarios for whom
detection of persons for any angles of filming is an
excessive requirement. For example, when designing
biometrical access control systems and interactive
advertisement billboards, it is assumed that a person
looks at a camera frontally or at a small angle thereto.
In case of searching objects through video streams,
apart from high precision-and-recall factors, a
detector should run in real-time on relatively cheap
computer equipment. If we do not take into account
the detectors based on empirical models (for example,
parametric models of the distribution of skin tones)
that do not work well in real conditions, then, as a rule,
such algorithms have high complexity and occupy
most of the time of frame processing. In this case,
their operating speed depends on the video stream
resolution, a minimum size of target objects, the frame
scaling factor, and a number of objects presented
in scene. Variation of these parameter values can
result in fast performance degradation. Therefore,

improvement of computational efficiency of these
algorithms is currently very important.
The authors have developed a new frontal view face
detection approach based on a compact convolutional
neural network cascade with a minimum number of
parameters [1]. In this paper, it is benchmarked with
15 face detectors that have their source codes or demo
versions publicly available.

1. Face detection algorithms
Ideas proposed by Viola and Jones in the early 2000s are
the basis for many modern object detection algorithms
[2]. A detector construction scheme developed thereof
allows its computational complexity to be significantly
reduced when its generalization performance remains
the same. It is based on the following idea:
a)	 simple Haar functions (primitives), which can be
efficiently calculated via an integral image;
b)	 using the AdaBoost algorithm to build up a
composition (a strong classifier) consisting of simple
threshold decision rules (weak classifiers) that use
Haar functions to detect target objects;
c)	 construct detectors in the form of cascades
containing several strong classifiers (stages) with
different complexity for quick selection of image
background areas at early stages.
The use of cascading structures is now a standard
procedure when building-up real-time detectors.
However, only simple features extracted by Haar
functions are not enough for reliable detection
of complex objects in the wild (inhomogeneous
backgrounds, insufficient lighting, overlapping, and
perspective distortions).
There are many papers dedicated to improvement of
the Viola-Jones classical approach (Table 1). A key
point of them is to expand primitive Haar-like features

[16] Review and testing
of frontal face detectors

Abstract
This paper presents comparison results for the proposed face detection algorithm based on a

compact convolutional neural network cascade and modern frontal face detectors. Test re-
sults for 16 frontal view face detectors on two public benchmarks datasets are shown. A com-

parative assessment of the performance of face detection algorithms is made.
Keywords: face detection, cascade classifiers, convolutional neural networks, deep learning.

Citation: Kalinovskiy IA, Spitsyn VG. Review and testing of frontal face detectors. Computer Optics 2016; 40(1): 99-111.
DOI: 10.18287/0134-2452-2016-40-1-99-111.

I.A. Kalinovskiy 1, V.G. Spitsyn 1

1 Tomsk Polytechnic University

Image Processing, Pattern Recognition

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

100

[3] or to use other functions in order to extract
features, as well as to modify weak classifiers.

Table 1. Cascade face detectors
Algorithm Feature Classifier Type*

Lienhart R. [3] Haar Boosting over
decision stumps

frontal

Jain V. [4] Haar

Subburaman
[5] MCT

Boosting over
specific decision
rule

Marku N. [6] Binary test Boosting over
decision trees

Li J. [7] SURF
Boosting
over logistic
regression

Frontal/
profiled

Barr J. [8] Haar

Boosting over
decision stumps

Yang B. [9]
Set of

channelsMathias M.
[10]

* Different models are given for each head orientation.

Grayscale images should be enough for the operation
of most face detectors [2-8]. In papers [9, 10], an
alternative approach is offered when classifiers are
trained by a combination of different color channels
(grayscale, RGB, HSV, LUV) with addition of HOG
descriptor maps and a gradient magnitude. In other
words, both color and geometric information about an
object is apparently taken into account. Thus, in paper
[9], a subsampling operation is preliminary applied to
obtained maps followed by forming a vector, whereas
in paper [10] their integral expression is used for fast
computation of features.
The disadvantage of a boosted cascade classifier by
Viola and Jones and some other similar classifiers is the
dependence of image processing time on its content,
because it is impossible to predict in advance at what
stage of the cascade a background area will be rejected.
Besides, other problems emerge in classifying objects
that possess large intraclass dispersion. For example,
when solving the face detection problem, it is general
practice that different models are trained for different
angles of head rotation with relative to camera (0°±ψ
– frontal, 45°±ψ – half-frontal, 90°±ψ – profiled).
In addition to face detection task, of interest is also
the determination of head tilts and arrangement of
key points (positions of eyes, nose, lips, etc.). The
fact that these additional problems can be directly
solved at the stage of detection allows significantly
reducing the number of false alarms. This approach
is discussed in papers [11, 12]. In paper [11], a two-
level detector is considered. The first level is presented
by a standard cascade face detector, and the second

one – by a multitasking convolutional neural network
that additionally inspects detections, identifies face
orientations, and detect facial landmarks. In paper
[12], a cascade model is offered that simultaneously
solves face detection and face alignment problems. It
helps improve classifier precision while retaining an
acceptable operation speed.
Another class includes methods, in which the search
is performed by comparing each image region with a
target pattern or with a deformable object model that
allows us to simulate a wide range of variations in its
shape. The latest advances in these areas are presented
in papers [13, 14]. In paper [13], the mixture of
deformable models is studied. Its characteristic feature
is the ability to detect faces, to determine their postures,
and to predict facial landmarks within the framework
of a single procedure. In paper [14], the efficient
search method is proposed using a pattern matching
technique, in which negative images are additionally
used to suppress false detections. For fast calculation
of a response map, the authors used the generalized
Hough transform. Algorithms mentioned in papers
[13, 14] provide high precision-and-recall scores for
classification on standard tests. However, they are not
suitable for real-time tasks since they have a very low
execution speed (they are hugely slower than cascade
classifiers).
The most advanced objects detection systems
are currently built based on deep convolutional
neural networks (CNNs) [15, 16]. In contrast to
other machine learning methods, which demand
preliminary extraction of informative features to
perform classification, the convolutional networks
solve both of these problems in process of learning,
using directly source image data. The first attempts to
build CNN-based face detectors were made in the mid
2000s [17, 18], though they didn’t get widespread use
and they are significantly inferior in their quality and
operation speed vs state-of-the-art cascade detectors.
However, the most advanced CNNs have also been
recently applied to solve the face detection problem
in the wild [19-21], and they have been of better
quality compared to the above algorithms on standard
benchmark datasets.
The authors [19] have taught the well-known network
AlexNet using a collection of large scale pictures of
the AFLW benchmark [22] containing a great variety
of naturally captured postures and facial expressions.
The training data were expanded by due to samples
rotation on arbitrary angle. As a result, the authors
have obtained a unified model, which helps consider to
tilting and orientation thereof, and has low probability
of false alarms, too. However, the AlexNet CNN

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

Image Processing, Pattern Recognition 101

network contains 61∙106 parameters and, because of
the modern development of computer devices, it can’t
process live HD video streams using cost-effective
hardware. Though, proper attempts are being made to
optimize computation of CNNs [23].
In paper [20], as well as in our papers [1, 21],
a proper attempt was made to improve the
performance of deep convolutional networks
solving object detection problems through building
a cascade-structured detector in accordance with
ideas by Viola and Jones. The cascade proposed
by the authors and consisting of 6 CNNs is able to
detect faces over a wide range of head positions,
but it still has high computational complexity. All
detector performance data presented herein indicate
that the detector can process live VGA video streams
using only high-end graphics cards such as Nvidia
GeForce GTX TITAN Black GPU. It is evident in
this case that a search time depends heavily on a
number of persons presented in scene, since very
“slow” networks with lots of convolution kernels are
used at the last cascade stages.

2. Cascade of compact convolutional
neural networks

In recent years, the convolutional neural networks
have achieved great success in many computer vision
tasks. They now help identify thousands of different
classes of objects [24], thus a recognition rate for
separate classes, e.g., such as house numbers [25],
is comparable to medium human capabilities. One of
the reasons for this success is the increasing number
of neurons and connections. Sound or image analysis
via CNNs containing billions of parameters does not
seem to be a large problem due to increasing volumes
of computing resources of cloud-based platforms and,
most significantly, the advent of GPU virtualization
technologies (e.g., Nvidia GRID). In analysis
problems for video streams generated by mega-pixel
CCTV systems, volumes of data increase significantly.
Though VSaaS technologies (Video Surveillance
as a Service) have been flourishing, these services
have usually limited opportunities for video analysis
reduced to simple functions (e.g., motion detection).
The best solution to this problem is to place compute
nodes directly in digital cameras and to transfer data
mining functions thereto. This would solve scaling
problems, but should require adaptation of algorithms
in accordance with limited computational capabilities
of embedded systems.
The frontal face detection problem is a relatively
simple classification task, since it can be solved
even with the use of elementary features such as, for
example, MCT [5] or binary testing [6]. The main

difficulty is the reduction of false detection because
it is impossible to consider all conditions at training
(e.g., background, lighting conditions) under which
a real-time algorithm will perform. Therefore, first,
the use of complex models is not feasible to solve this
private problem, especially in circumstances when
computational resources are limited. Second, to build
a high-end and efficient classifier, it is needed to select
features keeping balance between the informational
value of object description and the complexity of
extraction.
Convolutional neural networks possess high flexibility
and they can preset the complexity of models by
changing a number of layers, maps, and sizes of
convolutional kernels. The capability to fine-tune
features extracted at each layer, when getting training
in detection of objects of one particular class, allows
CNNs to achieve high precision levels in searching
objects against strongly inhomogeneous backgrounds.
It should be considered that capabilities of the neural
networks to generalize the object images are reduced
with decreasing number of parameters, whereby the
frequency of type I errors (false detection) has been
growing. However, this problem can be solved by
additional check of detections using more complicated
networks (i.e., those that are capable to provide
a greater classification accuracy) similarly to the
structure of the cascade classifier by Viola and Jones.

Cascade structure
This proposed cascade face detector consists of 3
convolutional neural networks whose architectures are
shown in Figure 1. Each CNN solves the problem of
a background/face binary classification and contains
797 (CNN stage 1), 1,819 (CNN stage 2) and 2,923
(CNN stage 3) parameters. Rational approximation of
a hyperbolic tangent is used as an activation function:

()

() () 2 4

21.7159 tanh ,
3

1tanh sgn 1 .
1 1.41645

 = ⋅  
 

 
≈ −  + + + ⋅ 

f x x

y y
y y y

Neurons of subsampling layers have additionally one
weight and bias. The convolution stride is 1 pixel,
and the pooling stride is 2 pixels. In CNN1 and CNN2,
instead of traditional fully connected layers, sparse
layers are used (similarly to [17]). This gives a 50%
increase in the speed of the forward pass.

Training process
When designing the detector, we focused on video
processing. For the CNN training, aligned face im-
ages were taken from YouTube Faces Database [26].

Image Processing, Pattern Recognition

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

102

Background images were sampled from random You-
Tube videos in several stages during the preparation of
models. Face areas (such as eyes, nose, etc.) were also
added to the negative samples.

Fig. 1. Compact convolutional neural networks cascade

The authors have developed a framework for training
convolutional neural networks supporting multithreaded
implementations on CPU and integration capability
for Intel IPP and Intel MKL libraries to speed up
linear algebraic operations. About 1,000 experiments
were carried out with models in respect of selection of
the best CNN architecture and training parameters.
In our experiments, we aimed to find the minimum
configuration of a CNN which would be able to classify
the validation test set with an error below 0.5%. The
training time varied from several hours to 2-3 days
depending on the CNN size (for 106 training examples
on Intel Core i7 CPUs).
We used grayscale images for the training set. The training
set was normalized preliminarily in some experiments
using a procedure combining gamma correction and
DoG filter [27]. This transformation allowed faces to
be detected even in faint light. However, these models
have not been included in the final detector option
due to the computational complexity of normalization
procedures.
The CNN configuration was carried out as follows.
The number of convolutional layers varied from 1 to 4;
the number of feature maps on each subsequent layer
was redoubled. Pooling layers retrieved the training

set from a 2×2 domain with the stride of 2 pixels along
each axis that decreased the maps area by a factor of
4. The number of pooling layer maps interconnected
with convolutional layer maps varied from 2 to 5.
The number of neurons in the next-to-last layer was
a multiple of the number of feature maps at the last
convolutional layer.
The CNN (stage 1) architecture (Fig. 1) is the
best obtained solution possessing simultaneously
absolute compactness and reasonable generalization
perfomanse. CNNs with 2 and 3 maps at the first
layer (399 and 598 parameters, respectively)
did not overcome a 0.5% error level. Also, the
network with a less input size, for example 20×20
(461 parameters), hasn’t been trained. Note that
this configuration contains the least number of
convolution kernels from all CNN architectures
formerly suggested to solve the face detection
problem [17-20]. In this case, the probability of
deviations of a background-containing window is
100 times higher for CNN stage 1 compared to the
cascade described in paper [20].
All experiments were conducted mainly with CNNs
with small numbers of parameters. Therefore, for
the CNN training a Levenberg-Marquardt algorithm
was used as a basic training algorithm with a faster
convergence (but a higher computational cost of
iteration) compared to widespread methods for
solving similar optimization problems, such as GD,
CG, L-BFGS techniques [28]. The training results of
detector-based CNNs are shown in Table 2.
A test database set used to evaluate the quality of
different models contained several video clips. Table
3 shows the comparison of quality for every cascade
stage and their cooperation on test data.

Table 2. Error levels for detector-based CNNs

Database
set

Number
of images,

thou

Classification error, %

stage 1 stage 2 stage 3

Train
faces – 433
background

– 585
0.142 0.059 0.047

Validation
faces – 239
background

– 233
0.484 0.481 0.353

Table 3. Evaluation of cascade stages on test data

Metrics Stage 1 Stage 2 Stage 3 Cascade

Recall 0.891 0.931 0.945 0.844

Precision 0.179 0.219 0.104 0.990

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

Image Processing, Pattern Recognition 103

3. Test protocol
This section describes characteristics of 15 modern
frontal face detection algorithms, which were
compared to this detector proposed by the authors. It
also presents test database sets and a proper estimating
method.

Algorithms and libraries
involved in testing

1)	 A compact convolutional neural networks cascade
described in paper [1]. Denoted by: CompactCNN.
2)	 OpenCV 3.0.0 is a popular open source computer
vision library that provides image processing
algorithms.
3)	 It contains an object detectors framework based
on the modified Viola-Jones algorithm [3]. It is
supplied with five frontal face detectors. Four of
them use Haar-like features and one – local
binary patterns (LBP). Denoted by: OpenCV-
default, OpenCV-alt, OpenCV-alt2, OpenCV-alt-
tree, OpenCV-lbp..
4)	 MathWorks MatLab 2013b, Computer Vision
Toolbox is a package of computer vision algorithms
for frontal face detectors, including a Haar cascade
and an LBP cascade. Denoted by: Matlab-CART,
Matlab-LBP.
5)	 The algorithm in [7] is based on SURF-
descriptors and uses a logistic regression in the
capacity of a weak classifier. It is supplied as a
dynamic library containing two models. Denoted
by: SURF-24, SURF-32.
6)	 The algorithm in [6] uses, as one of its features,
pixel intensity comparison-based object detection
(a binary test). A source code is provided. Denoted
by: PICO.
7)	 The algorithm in [29] is an LBP-based cascade
trained using OpenCV features based on the AFLW
benchmark [22]. It is supplied in model format for
OpenCV object detectors. Denoted by: OpenCV-
Kostinger.
8)	 The algorithm in [30] is a Haar-based cascade
trained using OpenCV features. It is supplied in
model format for OpenCV object detectors. Denoted
by: OpenCV-Pham.
9)	 The algorithm in [13] is based on the mixture
of deformable models and includes models for
face profile orientations. The source code in the
Matlab language and two trained detectors are
provided. Denoted by: FDPL-small, FDPL-large.
10) The algorithm in [31] is a cascade based on
support vector machines (SVM). It is supplied in the
form of a dynamic link library. Denoted by: FDLIB.
Table 4 gives some characteristics for the above
mentioned algorithms.

Test database sets
There are many database sets specially designed for
evaluating face detectors such as FDDB [32], AFW
[13], MALF [33], IJB-A [34] benchmarks, etc. For
some sets (e.g., FDDB, MALF, IJB-A) a standardized
assessment algorithm is provided. Detectors were
tested on the most popular and, at the same time, more
complicated benchmarks such as FDDB and AFW,
which are able to evaluate the efficiency of algorithms
for the problem of searching faces in the wild.
The Face Detection Data Set and Benchmark (FDDB)
benchmark is a collection consisting of 2,845 pictures
(no more than 0.25 megapixels). It contains annotations
for 5,171 faces with a dimension of 20x20 pixels each.
For evaluating algorithms, the cross-validation is used
for 10 image subsets followed by results averaging.

Table 4. Summary table of face detector characteristics

Algorithm Number
of stages Input size Search

stride, pixel
CompactCNN (our) 3 23×27 4

OpenCV-default 25 24×24 1

OpenCV-alt 22 20×20 1

OpenCV-alt2 20 20×20 1

OpenCV-alt-tree 47 20×20 1

OpenCV-lbp 20 24×24 1

Matlab-CART - 20×20 -

Matlab-LBP - 24×24 -

SURF-24 5 24×24 Variable

SURF-32 5 32×32 Variable

PICO 24 24×24 0.1·
minSize*

OpenCV-Kostinger 24 24×24 1

OpenCV-Pham 31 20×20 1

FDPL-small no 80×80 -

FDPL-large no 150×150 -

FDLIB - 19×19 -
* minSize is the minimum face size

The Annotated Faces in the Wild (AFW) benchmark
consists of 205 large-scale (0.5-5 megapixels) images
and contains annotations for 468 faces. This benchmark
has been developed relatively recently and is mainly used
for multi-view detectors evaluation.
The quality of the binary classifier may be evaluated
via ROC and PR (Precision-Recall) curves [35]. In this
paper, PR curves reflecting the dependence of algorithm
precision (precision = TP/(TP+FP)) and recall (recall
= TP/(TP+FN)) are used when varying the threshold
of the decision rule. However, in practice, especially in
video processing, readjusting of the threshold performed

Image Processing, Pattern Recognition

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

104

Fig. 4. Annotations positions in the FDDB benchmark (at the top)
and the AFW benchmark (at the bottom) generated by algorithm 1

to obtain the best precision-and-recall ratio under
specific detector operating conditions is a complicated
problem. Therefore, a fundamentally different approach
is often used (see OpenCV Object detection framework:
http://docs.opencv.org/3.0-beta/index.html), in which
an image region is classified as an object-containing area
if the number of neighbor detections (minNeighbors)
inside this area exceeds the given threshold (Fig. 2). This
method ensures strong regulation of the precision-and-
recall ratio. Besides, it is convenient in setting up because
of the parameter is integer.
When estimating the quality of the object detection
algorithm, some difficulties emerge which are
associated with ambiguous matching of localization
areas found by the detector (detection) and pointed
out by an expert (annotation). The following
assessment criterion proposed for the PASCAL Visual
Object Classes contest [36] is widely distributed now:

()
() ()

0,5, 1
, ,

, 0
σ ≥∩ 

σ = δ σ = ∪ 

S A D
otherS A D

where σ is the area overlapping factor; S is the area;
A, D are respectively annotated and found by the detector
object localization areas; δ is the assessment of true or false
detections (each annotation can be matched with only one
detection; the rest of them are considered to be false).

Fig. 2. Classifier-generated detections cluster in multiresolution
image analysis

In case of face detection, a problem of estimation
is additionally complicated by the following
reasons (Fig. 3):
a)	 it is difficult to note an exact face boundary,
especially for nonfrontal head postures;
b)	 detectors usually classify rectangular areas;
this doesn’t fit an oval face shape;
c)	 each detector defines various localization
areas, depending on the training set and the
detection clustering algorithm.

Fig. 3. Face annotations from the AFW benchmark (a white
frame) and localization areas found by different detectors

This can cause errors in the annotation-
detection comparison when the assessment of
their mutual arrangement σ turns out to be less
than 0.5, whereas the face is visually placed
within a region localized by the algorithm [19].
This problem is usually solved by expanding
detections boundaries [20]. In this paper,
within a view to correcting the assessment
of algorithms, annotation boundaries are
expanded and narrowed according to rules
described by algorithm 1 (Fig. 4). This allows
us to use a single assessment procedure for all
face detectors on different database sets.

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

Image Processing, Pattern Recognition 105

Algorithm 1. Detections assessment

Input: Xa, Ya, Wa, Ha, Xd, Yd, Wd, Hd are the coordinates of the
height, width, and coordinates of annotation and detection
areas, respectively
Output: bool means the truth or false detections

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

for j = -1 to 1 do
for i = -1 to 1 do

for s = -2 to 2 do
if s < 0

scale = 1.1-s

else
scale = 0.95s

end if
X1 = Xa – 0.5·(scale – 1)·Wa

Y1 = Ya – 0.5·(scale – 1)·Ha

X2 = X1 + scale·Wa

Y2 = Y1 + scale·Ha
if i < 0

X1 = X1 + i·0.2·(X2 – X1)
else

X2 = X2 + i·0.2·(X2 – X1)
end if
Y1 = Y1 + j·0.2·(Y2 – Y1)
X3 = Xb

Y3 = Yb

X4 = X3 + Wb

Y4 = Y3 + Hb

if ¬ (X1 ≥ X4 || X2 ≤ X3 || Y1 ≥ Y4 || Y2 ≤ Y3)
if σ(X1, …, X4, Y1, …, Y4) ≥ 0.5

return true
end if

end if
end for

end for
end for
return false

Annotations modification
in the FDDB benchmark

Annotations in the FDDB benchmark are represent-
ed by ellipses; this allows us to describe face bound-
aries more precisely compared to rectangular areas.
However, because of the above reasons, the compar-
ison of elliptic shape annotations with rectangular
detections results in faulty assessment of the latter
ones (Fig. 5).

Fig. 5. Test results by CompactCNN on the FDDB benchmark.
Detections marked in white are considered to be true, detec-
tions marked in black are considered to be false, annotations
are marked with oval curves, and σ values are marked with
numbers

In this context, to possibly use the proposed estimating
method (algorithm 1), the ellipses have been replaced
by the limiting rectangles as follows:

() ()

() ()

2 2 2 2

2 2 2 2

2 sin ,

2 cos ,

0.5 , 0.5 ,

= + − ⋅ ω

= + − ⋅ ω

= − = −

W a b a

H a b a

X x W Y y H

where X, Y, W, H are the coordinates of the height,
width, and coordinates of the rectangle, respectively;
a, b, ω, x, y are the major and minor semi-axes, the
angle of rotation, and the coordinates of the ellipse
center, respectively.

Benchmark problems
and algorithm parameters

We have considered three tasks: detection of small
(from 20×20 pixels), medium (from 40×40 pixels) and
big (from 80×80 pixels) faces. We calculated proper PR
curves for each detector, depending on the minNeighbors
parameter. The algorithms were totally benchmarked
with 9 parameter values sets as follows:
1)	 minNeighbors – {1, 2, 3} (for the case 1, the detection
algorithm in terms of recall prevails; for the case 3 – the
detection algorithm in terms of precision prevails);
2)	 the minimum size of face (minSize) and the scaling
factor connected with them (scaleFactor) used in
constructing an image pyramid– {(20; 1.05); (40; 1.1),
(80; 1.1)}.
Note 1: During testing, around every image makes a zero
border with size 50 pixels.
Note 2: For the Matlab, PICO and FDLIB detectors, no
minNeighbors parameter is provided. However, it is possible
to control only the threshold of the decision rule (threshold).
The threshold for these detectors was set as follows:
a)	 Matlab, PICO: threshold = 2 + minNeighbors;
b)	 FDLIB: threshold = 2 · minNeighbors.
Note 3: The FDPL detector provides no interface to
control the minNeighbors, minSize and scaleFactor
parameters, so it was tested only with default settings.
Note 4: The FDLIB detector provides no interface to
control the inSize and scaleFactor parameters, so testing
was performed only for 3 values of the threshold.
Note 5: The CompactCNN, SURF and OpenCV-
Kostinger detectors were taught on face patterns cut
precisely across the width of eyes and in line of eyes and
chin. When training other models, a wider facial area was
obviously used, including a forehead. As a result, detectors
of the second group recognize smaller faces at a fixed
minSize value. In this regard, with a view of meaningful
comparison, a proportional factor for minSize was
empirically selected to be used during initializing the

Image Processing, Pattern Recognition

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

106

SURF and OpenCV-Kostinger detectors:
minSize’ = 0.75 · minSize.
In this case, face localization areas detected by these
algorithms were expanded:
X’ = X – 0.2W, Y’ = Y – 0.3H, W’ = 1.4W, H’ = 1.6H,
where X, Y, W, H are the coordinates of
the height, width, and coordinates of the upper left
corner of a limiting rectangular, respectively.
Note 6. Values of additional parameters specific for
each individual algorithm are shown in Table 5.

Table 5. Specific detector parameters

Algorithm Parameter Value

CompactCNN T1, T2, T3 -1.5, -1.25, -1.0

OpenCV
useOptimized true

useOpenCL false

SURF
step 1

fast true

PICO stridefactor 0.1

4. Results and benchmarks
The test results for 16 frontal face detectors on the
AFW and DDB benchmarks (all data resulting from
benchmarks are available at https://github.com/
Bkmz21/FD-Evaluation) are given below. The
comparison of all algorithms is performed at equal
parameter sets, and the used test protocol is as close
to real-time operating conditions as possible. This
distinguishes these performed tests from existing
performance evaluations of some algorithms (SURF,
PICO, OpenCV Kstinger, FDPL) performed by ROC
analysis, which reflects the ratio of true-to-false
detection levels. However, it does not give an indication
of algorithm behavior when choosing the best value of
the threshold of the decision rule.
Figure 6 shows PR curves obtained when solving the
face detection problem for faces with a dimension
of 40×40 pixels. On the FDDB benchmark, the best
results were shown by the OpenCV-Kstinger detector.
The CompactCNN detector has a similar recall level
but less precision. On the AFW benchmark, followed
far behind thereof by recall ratio (R = 0.9), the
leading role is played by the FDPL-small detector.
However, the FDDB benchmark detects only 73% of
the total number of objects in photos, because it is not
designed for detecting small-size and blurred images.
The CompactCNN cascade and the OpenCV-Kstinger
cascade on the AFW benchmark are comparable with
each other in their operation quality. Moreover, the
CompactCNN detector on these benchmarks is of
better precision compared to all Viola-Jones cascade
detectors added to the OpenCV 3.0.0 library.

Quality assessment of face detectors
It is easier to assess the quality of binary classifiers
using the F-measure that is defined as a harmonic
mean of recall (R) and precision (P):

() []
11 11 , 0, 1 ,F

P R

−
 = α + − α α ∈ 
 

where α is a weighting factor.

Fig. 6. The PR curve graphics for the face detection problem
for minimum face size of 40×40 pixels on the FDDB bench-
mark and the AFW benchmark

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

Image Processing, Pattern Recognition 107

The mean value of F-measures calculated along
the PR curve is accepted as the single detector
assessment for each benchmark (Table 6). Besides,
an individual level α is set up for all PR curve points
(Table 7), since precision and recall are not always of
equal value for different scenarios of using detectors
(for example, in biometric systems, precision is of
higher priority).

Table 6. Evaluation of face detectors on benchmarks

 FDDB-20 FDDB-40 FDDB-80 AFW-20 AFW-40 AFW-80 F
Compact

CNN

(our)

0.854 0.850 0.814 0.717 0.778 0.789 0.800

OpenCV-

default
0.630 0.739 0.761 0.143 0.294 0.494 0.510

OpenCV-

alt
0.806 0.837 0.803 0.462 0.662 0.754 0.721

OpenCV-

alt2
0.751 0.816 0.798 0.319 0.552 0.712 0.658

OpenCV-

alt-tree
0.665 0.597 0.531 0.475 0.402 0.398 0.511

OpenCV-

lbp
0.697 0.778 0.763 0.225 0.420 0.578 0.577

Matlab-

CART
0.795 0.831 0.794 0.441 0.647 0.752 0.710

Matlab-

LBP
0.756 0.794 0.756 0.327 0.532 0.634 0.633

SURF-24 0.751 0.833 0.814 0.324 0.631 0.671 0.671

SURF-32 0.738 0.840 0.824 0.269 0.492 0.548 0.619

PICO 0.810 0.821 0.798 0.514 0.617 0.686 0.708

OpenCV-

Koestinger
0.873 0.863 0.814 0.723 0.780 0.797 0.808

OpenCV-

Pham
0.826 0.823 0.774 0.586 0.692 0.735 0.739

FDPL-

small
0.842 0.842 0.842 0.869 0.869 0.869 0.856

FDPL-

large
0.547 0.547 0.547 0.715 0.715 0.715 0.631

FDLIB 0.574 0.574 0.574 0.358 0.358 0.358 0.466

Table 7. Values of parameter α when calculating
the F-measure

min
Neighbors

α Explanation

1 0.2 Detectors with high recall levels are
prioritized

2 0.5 Precision and recall are of equal
value

3 0.8 Detectors with high precision levels
are prioritized

For each task, Table 8 shows space allocation
between the detectors in relation to descending their
F-measures and a relative delay behind the winning
side (percentage difference) – ∆F. The mean value
∆F is offered as a relative general assessment of

algorithm quality on all benchmarks. The assessment
F∆ shows how the F-measure level of the algorithm

is comparable to the best solution. According to the
above criterion, the ranking result for face detectors
is given in Figure 7. The best detector is the FDPL-
small detector (though not for all benchmarks). This
is reflected by the assessment 1%F∆ = − . The detector
is able to search either frontal or profiled faces
that ensure recall criterion leadership on the AFW
benchmark. It is followed by the OpenCV-Kostinger
detector that is slower by 5.44% of percentage points.
The CompactCNN detector ranks third, being slower
than the FDPL-small detector by 6.36% and the
OpenCV-Kostinger detector – by 0.92% of percentage
points.

Table 8. Rating of face detectors by scores

 FDDB-20 FDDB-40 FDDB-80 AFW-20 AFW-40 AFW-80 ,%F∆

Compact

CNN

(our)

2 (-2.18) 2 (-1.51) 3 (-3.33) 3 (-17.5) 3 (-10.5) 3 (-9.21) -7.36

OpenCV-

default
13 (-27.8) 13 (-14.4) 9 (-9.62) 16 (-83.5) 16 (-66.2) 14 (-43.2) -40.78

OpenCV-

alt
6 (-7.67) 5 (-3.01) 4 (-4.63) 8 (-46.8) 6 (-23.8) 4 (-13.2) -16.53

OpenCV-

alt2
9 (-14) 10 (-5.45) 5 (-5.23) 13 (-63.3) 10 (-36.5) 8 (-18.1) -23.75

OpenCV-

alt-tree
12 (-23.8) 14 (-30.8) 13 (-36.9) 7 (-45.3) 14 (-53.7) 15 (-54.2) -40.81

OpenCV-

lbp
11 (-20.2) 12 (-9.85) 8 (-9.38) 15 (-74.1) 13 (-51.7) 12 (-33.5) -33.11

Matlab-

CART
7 (-8.94) 7 (-3.71) 6 (-5.7) 9 (-49.3) 7 (-25.5) 5 (-13.5) -17.77

Matlab-

LBP
8 (-13.4) 11 (-8) 10 (-10.2) 11 (-62.4) 11 (-38.8) 11 (-27) -26.63

SURF-24 9 (-14) 6 (-3.48) 3 (-3.33) 12 (-62.7) 8 (-27.4) 10 (-22.8) -22.28

SURF-32 10 (-15.5) 4 (-2.67) 2 (-2.14) 14 (-69) 12 (-43.4) 13 (-36.9) -28.27

PICO 5 (-7.22) 9 (-4.87) 5 (-5.23) 6 (-40.9) 9 (-29) 9 (-21.1) -18.04

OpenCV-

Koestinger
1 (0) 1 (0) 3 (-3.33) 2 (-16.8) 2 (-10.2) 2 (-8.29) -6.44

OpenCV-

Pham
4 (-5.38) 8 (-4.63) 7 (-8.08) 5 (-32.6) 5 (-20.4) 6 (-15.4) -14.41

FDPL-

small
3 (-3.55) 3 (-2.43) 1 (0) 1 (0) 1 (0) 1 (0) -1.00

FDPL-

large
15 (-37.3) 16 (-36.6) 12 (-35) 4 (-17.7) 4 (-17.7) 7 (-17.7) -27.03

FDLIB 14 (-34.3) 15 (-33.5) 11 (-31.8) 10 (-58.8) 15 (-58.8) 16 (-58.8) -46.00

* in parentheses, the percentage difference ∆F is given with
the algorithm having the maximal F-measure for each of the
tasks.

Image Processing, Pattern Recognition

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

108

Fig. 7. Detectors ranking according to assessment of F∆

Besides, the classifiers were evaluated using the
Friedman test that showed lack of statistically
significant differences in performance quality between
the CompactCNN, OpenCV K stinger and FDPL-
small detectors at significance level of 0.05. Note that
the FDPL-small and OpenCV K stinger algorithms
were trained on megapixel pictures from the AFLW
benchmark, whereas for training the CompactCNN
detector we used frames from random YouTube
videos. Which is why, the designed detector can gain
the advantage in problems of face search within videos,
because in this case the processed data are comparable,
to a far greater degree, to statistical distribution of the
training set.

Performance evaluation of face detectors
The computational efficiency is an important
characteristic of object detectors especially when
solving real-time tasks and processing big data. Under
such conditions, cascade structured detectors have the
advantage, since they are able to quickly eliminate most
of the image that doesn’t contain any target objects.
For example, the first stage of the Haar-like OpenCV-
alt cascade consisting of 3 weak classifiers requires 26
arithmetic operations to perform classification (when
using an integral matrix and rectangular parameters).
The algorithmic complexity of CNNs is much higher
because of necessity for computing output signals for
several thousands of neurons. For example, to obtain
the response map for CNN stage 1 (3,905 neurons, Fig.

1), we need ≈340·106 operations (with a window stride
of 4 pixels) on the image with resolution of 1,280×720
pixels, while requiring only ≈23·106 for the OpenCV-
alt cascade (with the window stride of 1 pixel).
In addition to the computational complexity, precision
and the number of strong classifiers have a very
significant effect on performance. In worst cases,
the detector performance depends on the number of
cascade stage when the image is completely filled with
target objects. The total number of weak classifiers in
the 22-staged OpenCV-alt detector is 2,135. Thus, in
the worst case it will require ≈16·109 operations, while
the CompactCNN detector will require only ≈1.5·109
operations.
Probability distribution of type I errors by cascade
stages determines the detector performance speed
in normal operation conditions (i.e. a level between
processing of an absolutely black image and a fully
face-filled image). The Haar-like cascades from the
OpenCV detector reject 60-70% of positions of a
sliding window at the first stage, using from 3 to 9
features. The detector [7] based on more complex
features – SURF-descriptors – rejectes 95% of
windows, however at the same time, it produces an
increasingly larger number of computations. The
CompactCNN detector extracting high-level features
optimized for face detection is able to reject, already
at the first stage, more than 99.99% of all window
positions at a zero threshold of the decision rule [1].
Thus, its operation speed weakly depends on the

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

Image Processing, Pattern Recognition 109

image content.
The microarchitecture of modern processors
is superscalar. It contains blocks of reordering
instructions and renaming registers, and the control
devices are able to perform many various scalar and
vector data operations. In this regard, the algorithm
performance capacity depends not only on its
computational complexity, but also on its structure
(conditional constructs, order of memory assess, etc.),
data type and instructions sets, as well as on the ability
to be efficiently vectored and paralleled.
The decision trees are base elements for most detectors
built with the help of a boosting procedure (see Table
1). Objects are searched by the sliding window where
features are computed at different fixed points that
is not preferable from the point of view of loading
values in cache. A tree traversal procedure is poorly
vectored due to the relationship between results and
the transition sequence. In this regard, it is quite
difficult to build an efficient algorithm to compute
detectors of this type that takes advantages of SIMD
extensions of modern CPUs and massively parallel
GPU architectures. Many of papers are dedicated to
the solution of this problem [37, 38].
From the point of view of the computational
architecture, CNNs are much more efficient than Viola-
Jones algorithms and their modern modifications:
1)	 The CNN response map can be computed without
using the sliding window by applying a linear operation
of correlation with filter sets, pooling operations,
and non-linear by-pixel transformation [39] to the
total image. Due to this property, data are read by
continuous data memory units. This allows efficiently
use a CPU cache.
2)	 There are several dozens of data operations
(without branches inside iterations) for each reading
operation.
3)	 By its definition, a neural network is a massively
parallel algorithm, so it can be easily vectored and
paralleled.
The above mentioned specific features of CNNs
are essentially important when computations are
transferred to GPUs. The Graphic processing units
(GPUs) allow us to fully disclose all advantages of
natural parallelism of CNNs and they are supported in
hardware for two-dimensional database sets.
The main disadvantage of CNNs is the fact that it
is necessary to store large volumes of intermediate
computations (features maps). This increases the
required memory space and reduces the efficiency of
multithreaded implementation under insufficient size
of CPU’s memory cache.
The CompactCNN detector has been implemented
using 3 technologies: SIMD extension of x86 processor

family (for each of 3 instructions sets – SSE, AVX, AVX2
– supported by microarchitectures of Intel Sandy/Ivy
Bridge and Haswell/Broadwell processors), Nvidia
CUDA, and OpenCL. The calculations are carried
out using single precision, and the precision-recall
characteristic is identical for all implementations.
Figure 8 gives the performance comparison for the
face detectors involved in testing. Measurements were
made for a single execution mode on Intel Core i7-
3610QM CPU (3.1 GHz) while processing the first
image subset from the FDDB benchmark (minSize –
40×40, scaleFactor – 1.1, minNeighbors – 2, with no
frame added). Program files and libraries for all de-
tectors, except SURF and FDLIB, are 64-bit ones. We
used the C++ compiler incorporated with IDE Mic-
rosoft Visual Studio Community 2013, ОС Microsoft
Windows 8.1 (64-bit).

Fig. 8. Detectors ranking by operation speed for the FDDB-40
benchmark

Due to the original algorithm used for computing CNNs
and optimizing the software code with the help of the
vector intrinsic functions, and with due consideration of
limited number of logical registers and specific features
of Intel CPU microarchitectures, the CompactCNN
detector demonstrates the outstanding data processing
speed (during testing, we used the implementation
optimized by AVX intrinsic functions).

Conclusion
The test results for 16 frontal view face detectors show
that the proposed detector based on the compact
CNN cascades ranks third by its F-measure level being
averagely 7.4% behind the best solution. However, it
takes the leading position in its data processing speed,
thus improving the previous record by 2.3 times
(PICO) and being 1140 times (FDPL-small) and 10
times (OpenCV-Kstinger) as greater as other detectors
of better quality.

Image Processing, Pattern Recognition

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

110

The designed cascade detector consists of only 3
stages. In addition, 99.99% of background-containing
windows are rejected already at the first stage. This
factor substantially reduces the dependence of the
detector speed on image content [1]. Because of
availability of implementations for 3 computing
technologies, including OpenCL, the CompactCNN
detector can be launched basically on any device. For
this purpose, the implementation for Intel CPU and
Nvidia GPU has been highly optimized with regard to
specific features of processors microarchitectures. The
cascade of small CNNs proved to be a very effective
solution for the frontal face detection problem and
made it possible, for the first time, to process a 4K
Ultra HD high-resolution video stream even on low-
power computing devices [1].
The research is carried out at Tomsk Polytechnic
University within the framework of Tomsk Polytechnic
University Competitiveness Enhancement
Program.

References
1. Kalinovskiy IA, Spitsyn VG. Compact Convolutional Neural

Network Cascade for Face Detection. Source: http://arxiv.org/

abs/1508.01292.pdf.

2. Viola P, Jones MJ. Rapid object detection using a boosted cas-

cade of simple features. IEEE Conference on Computer Vision and

Pattern Recognition; 2001; 1: 511-518.

3. Lienhart R, Maydt J. An extended set of Haar-like features for

rapid object detection. IEEE International Conference on Image

Processing; 2002: 1: 900–903.

4. Jain V, Learned-Miller E. Online domain adaptation of a pre-

trained cascade of classifiers. IEEE Conference on Computer Vi-

sion and Pattern Recognition; 2011; 577–584.

5. Subburaman V, Marcel S. Fast bounding box estimation

based face detection. European Conference on Computer Vision,

Workshop on Face Detection; 2010; 1–14.

6. Marku N, Frljak M, Pandi IS, Ahlberg J, Forchheimer R.

A method for object detection based on pixel intensity com-

parisons organized in decision trees. Source: http://arxiv.org/

abs/1305.4537.pdf.

7. Li J, Zhang Y. Learning SURF cascade for fast and accurate

object detection. IEEE Conference on Computer Vision and Pat-

tern Recognition; 2013; 3468–3475.

8. Barr JR, Bowyer KW, Flynn PJ. The effectiveness of face de-

tection algorithms in unconstrained crowd scenes. IEEE Winter

Conference on Applications of Computer Vision; 2014; 1020–

1027.

9. Yang B, Yan J, Lei Z, Li SZ. Aggregate channel features for

multi-view face detection. IEEE International Joint Conference on

Biometrics; 2014; 1-8.

10. Mathias M, Benenson R, Pedersoli M, Van Gool L. Face de-

tection without bells and whistles. European Conference on Com-

puter Vision; 2014; 720-735.

11. Zhang C, Zhang Z. Improving multiview face detection with

multi-task deep convolutional neural networks. IEEE Winter Con-

ference on Applications of Computer Vision; 2014; 1036-1041.

12. Chen D, Ren S, Wei Y, Cao X, Sun J. Joint cascade face de-

tection and alignment. European Conference on Computer Vision;

2014; 109-122.

13. Zhu X, Ramanan D. Face detection, pose estimation, and

landmark localization in the wild. IEEE Conference on Computer

Vision and Pattern Recognition; 2012; 2879-2886.

14. Li H, Lin Z, Brandt J, Shen X, Hua G. Efficient boosted ex-

emplar-based face detection. IEEE Conference on Computer Vi-

sion and Pattern Recognition; 2014; 1843-1850.

15. Zeiler M, Fergus R. Visualizing and understanding convolutional

networks. European Conference on Computer Vision; 2014; 818-833.

16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,

Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolu-

tions. Source: http://arxiv.org/abs/1409.4842.pdf.

17. Garcia C, Delakis M. Convolutional face finder: A neural

architecture for fast and robust face detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence; 2004; 1408-1423.

18. Osadchy M, LeCun Y, Miller M. Synergistic face detection

and pose estimation with energy-based models. Journal of Ma-

chine Learning Research; 2007; 1197-1215.

19. Farfade SS, Saberian M, Li L-J. Multi-view face detection

using deep convolutional neural networks. International Confer-

ence on Multimedia Retrieval; 2015.

20. Li H, Lin Z, Shen X, Brandt J, Hua G. A Convolutional neu-

ral network cascade for face detection. IEEE Conference on Com-

puter Vision and Pattern Recognition; 2015; 5325-5334.

21. Kalinovskiy IA, Spitsyn VG. Algorithm for face detection

on Ultra HD video [In Russian]. Conference on technical vision in

control systems; 2015; 95-96.

22. Kostinger M, Wohlhart P, Roth PM, Bischof H. Annotated

Facial Landmarks in the Wild: A Large-scale, real-world database

for facial landmark localization. IEEE International Conference on

Computer Vision Workshops; 2011; 2144-2151.

23. Vasilache N, Johnson J, Mathieu M, Chintala S, Piantino S,

LeCun Y. Fast convolutional nets with fbfft: A GPU performance

evaluation. Source: http://arxiv.org/abs/ 1412.7580.pdf.

24. Ioffe S, Szegedy C. Batch normalization: accelerating deep

network training by reducing internal covariate shift. Source:

http://arxiv.org/abs/1502.03167.pdf.

25. Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-super-

vised nets. Source: http://arxiv.org/abs/ 1409.5185.pdf.

26. Wolf L, Hassner T, Maoz I. Face recognition in uncon-

strained videos with matched background similarity. IEEE Confer-

ence on Computer Vision and Pattern Recognition; 2014; 529-534.

27. Kalinovskiy IA, Spitsyn VG. Face detection algorithm based

on the convolutional neural network [In Russian]. Neurocomput-

ers: Development and Applications; 2013; 10: 48-53.

28. Le QV, Coates A, Prochnow B, Ng AY. On Optimization

Methods for Deep Learning. International Conference on Machine

Learning; 2011; 265-272.

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

Image Processing, Pattern Recognition 111

29. Kostinger M. Efficient metric learning for real-world face

recognition. Graz University of Technology. PhD thesis; 2013.

30. Pham MT, Cham TJ. Fast training and selection and Haar

features using statistics in boosting-based face detection. IEEE In-

ternational Conference on Computer Vision; 2007; 1-7.

31. Kienzle W, Bakir G, Franz M, Scholkopf B. Face detection:

efficient and rank deficient. Advances in Neural Information Pro-

cessing Systems; 2005; 673-680.

32. Jain V, Learned-Miller E. FDDB: A Benchmark for face

detection in unconstrained settings. Technical Report UM-

CS-2010-009. University of Massachusetts; 2010.

33. Yang B, Yan J, Lei Z, Li SZ. Fine-grained evaluation on face

detection in the wild. IEEE International Conference on Automatic

Face and Gesture Recognition; 2015.

34. Klare BF, Klein B, Taborsky E, Blanton A, Cheney J, Allen

K, Grother P, Mah A, Burge M, Jain AK. Pushing the frontiers

of unconstrained face detection and recognition: IARPA Janus

Benchmark A. IEEE Conference on Computer Vision and Pattern

Recognition; 2015; 1931-1939.

35. Davis J, Goadrich M. The relationship between Preci-

sion-Recall and ROC curves // International Conference on Ma-

chine Learning; 2006; 233-240.

36. Everingham M, Gool LV, Williams C, Winn J, Zisserman A.

The PASCAL visual object classes (VOC) challenge. International

Journal of Computer Vision; 2010; 88(2): 303-338.

37. Oro D, Fernandez C, Saeta JR, Martorell X, Hernando J. Re-

al-time GPU-based face detection in HD video sequences. IEEE

International Conference Computer Vision Workshops; 2011;

530–537.

38. Nguyen T, Hefenbrock D, Oberg J, Kastner R, Baden

S. A software-based dynamic-warp scheduling approach for

load-balancing the Viola–Jones face detection algorithm on GPUs.

Journal of Parallel and Distributed Computing; 2013; 73(5): 677–

685.

39. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, Le-

Cun Y. OverFeat: Integrated recognition, localization and de-

tection using convolutional networks. Source: http://arxiv.org/

abs/1312.6229.pdf.

