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Introduction
Face detection is the first step in solving face analy-
sis problems such as person identification, emotion, 
gender, and age recognition. The practical interest to 
these problems focuses on the fact that they are much 
needed in digital cameras, smartphones and other 
devices. They are also widely used in smart security 
systems and are highly demanded in photo control ser-
vices through social media.
So far, efforts of researchers are aimed at developing 
face detection algorithms in the wild with considering 
to three degrees of head motion freedom. The 
complexity of the problem consists in a wide variety 
of face expressions, conditions, and postures, in which 
a person can be captured, as well as in a smaller facial 
area compared to the total picture surface.
However, we can offer quite a lot of scenarios for whom 
detection of persons for any angles of filming is an 
excessive requirement. For example, when designing 
biometrical access control systems and interactive 
advertisement billboards, it is assumed that a person 
looks at a camera frontally or at a small angle thereto.
In case of searching objects through video streams, 
apart from high precision-and-recall factors, a 
detector should run in real-time on relatively cheap 
computer equipment. If we do not take into account 
the detectors based on empirical models (for example, 
parametric models of the distribution of skin tones) 
that do not work well in real conditions, then, as a rule, 
such algorithms have high complexity and occupy 
most of the time of frame processing. In this case, 
their operating speed depends on the video stream 
resolution, a minimum size of target objects, the frame 
scaling factor, and a number of objects presented 
in scene. Variation of these parameter values can 
result in fast performance degradation. Therefore, 

improvement of computational efficiency of these 
algorithms is currently very important. 
The authors have developed a new frontal view face 
detection approach based on a compact convolutional 
neural network cascade with a minimum number of 
parameters [1]. In this paper, it is benchmarked with 
15 face detectors that have their source codes or demo 
versions publicly available.

1. Face detection algorithms 
Ideas proposed by Viola and Jones in the early 2000s are 
the basis for many modern object detection algorithms 
[2]. A detector construction scheme developed thereof 
allows its computational complexity to be significantly 
reduced when its generalization performance remains 
the same. It is based on the following idea:
a) simple Haar functions (primitives), which can be 
efficiently calculated via an integral image; 
b) using the AdaBoost algorithm to build up a 
composition (a strong classifier) consisting of simple 
threshold decision rules (weak classifiers) that use 
Haar functions to detect target objects; 
c) construct detectors in the form of cascades 
containing several strong classifiers (stages) with 
different complexity for quick selection of image 
background areas at early stages. 
The use of cascading structures is now a standard 
procedure when building-up real-time detectors. 
However, only simple features extracted by Haar 
functions are not enough for reliable detection 
of complex objects in the wild (inhomogeneous 
backgrounds, insufficient lighting, overlapping, and 
perspective distortions).
There are many papers dedicated to improvement of 
the Viola-Jones classical approach (Table 1). A key 
point of them is to expand primitive Haar-like features 
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[3] or to use other functions in order to extract 
features, as well as to modify weak classifiers.

Table 1. Cascade face detectors 
Algorithm Feature Classifier Type*

Lienhart R. [3] Haar Boosting over 
decision stumps

frontal

Jain V. [4] Haar

Subburaman 
[5] MCT

Boosting over 
specific decision 
rule

Marku N. [6] Binary test Boosting over 
decision trees 

Li J. [7] SURF
Boosting 
over logistic 
regression 

Frontal/
profiled

Barr J. [8] Haar

Boosting over 
decision stumps 

Yang B. [9]
Set of 

channelsMathias M. 
[10]

* Different models are given for each head orientation.

Grayscale images should be enough for the operation 
of most face detectors [2-8]. In papers [9, 10], an 
alternative approach is offered when classifiers are 
trained by a combination of different color channels 
(grayscale, RGB, HSV, LUV) with addition of HOG 
descriptor maps and a gradient magnitude. In other 
words, both color and geometric information about an 
object is apparently taken into account. Thus, in paper 
[9], a subsampling operation is preliminary applied to 
obtained maps followed by forming a vector, whereas 
in paper [10] their integral expression is used for fast 
computation of features.
The disadvantage of a boosted cascade classifier by 
Viola and Jones and some other similar classifiers is the 
dependence of image processing time on its content, 
because it is impossible to predict in advance at what 
stage of the cascade a background area will be rejected. 
Besides, other problems emerge in classifying objects 
that possess large intraclass dispersion. For example, 
when solving the face detection problem, it is general 
practice that different models are trained for different 
angles of head rotation with relative to camera (0°±ψ 
– frontal, 45°±ψ – half-frontal, 90°±ψ – profiled).
In addition to face detection task, of interest is also 
the determination of head tilts and arrangement of 
key points (positions of eyes, nose, lips, etc.). The 
fact that these additional problems can be directly 
solved at the stage of detection allows significantly 
reducing the number of false alarms. This approach 
is discussed in papers [11, 12]. In paper [11], a two-
level detector is considered. The first level is presented 
by a standard cascade face detector, and the second 

one – by a multitasking convolutional neural network 
that additionally inspects detections, identifies face 
orientations, and detect facial landmarks. In paper 
[12], a cascade model is offered that simultaneously 
solves face detection and face alignment problems. It 
helps improve classifier precision while retaining an 
acceptable operation speed.
Another class includes methods, in which the search 
is performed by comparing each image region with a 
target pattern or with a deformable object model that 
allows us to simulate a wide range of variations in its 
shape. The latest advances in these areas are presented 
in papers [13, 14]. In paper [13], the mixture of 
deformable models is studied. Its characteristic feature 
is the ability to detect faces, to determine their postures, 
and to predict facial landmarks within the framework 
of a single procedure. In paper [14], the efficient 
search method is proposed using a pattern matching 
technique, in which negative images are additionally 
used to suppress false detections. For fast calculation 
of a response map, the authors used the generalized 
Hough transform. Algorithms mentioned in papers 
[13, 14] provide high precision-and-recall scores for 
classification on standard tests. However, they are not 
suitable for real-time tasks since they have a very low 
execution speed (they are hugely slower than cascade 
classifiers).
The most advanced objects detection systems 
are currently built based on deep convolutional 
neural networks (CNNs) [15, 16]. In contrast to 
other machine learning methods, which demand 
preliminary extraction of informative features to 
perform classification, the convolutional networks 
solve both of these problems in process of learning, 
using directly source image data. The first attempts to 
build CNN-based face detectors were made in the mid 
2000s [17, 18], though they didn’t get widespread use 
and they are significantly inferior in their quality and 
operation speed vs state-of-the-art cascade detectors. 
However, the most advanced CNNs have also been 
recently applied to solve the face detection problem 
in the wild [19-21], and they have been of better 
quality compared to the above algorithms on standard 
benchmark datasets.
The authors [19] have taught the well-known network 
AlexNet using a collection of large scale pictures of 
the AFLW benchmark [22] containing a great variety 
of naturally captured postures and facial expressions. 
The training data were expanded by due to samples 
rotation on arbitrary angle. As a result, the authors 
have obtained a unified model, which helps consider to 
tilting and orientation thereof, and has low probability 
of false alarms, too. However, the AlexNet CNN 
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network contains 61∙106 parameters and, because of 
the modern development of computer devices, it can’t 
process live HD video streams using cost-effective 
hardware. Though, proper attempts are being made to 
optimize computation of CNNs [23].
In paper [20], as well as in our papers [1, 21], 
a proper attempt was made to improve the 
performance of deep convolutional networks 
solving object detection problems through building 
a cascade-structured detector in accordance with 
ideas by Viola and Jones. The cascade proposed 
by the authors and consisting of 6 CNNs is able to 
detect faces over a wide range of head positions, 
but it still has high computational complexity. All 
detector performance data presented herein indicate 
that the detector can process live VGA video streams 
using only high-end graphics cards such as Nvidia 
GeForce GTX TITAN Black GPU. It is evident in 
this case that a search time depends heavily on a 
number of persons presented in scene, since very 
“slow” networks with lots of convolution kernels are 
used at the last cascade stages.

2. Cascade of compact convolutional 
neural networks 

In recent years, the convolutional neural networks 
have achieved great success in many computer vision 
tasks. They now help identify thousands of different 
classes of objects [24], thus a recognition rate for 
separate classes, e.g., such as house numbers [25], 
is comparable to medium human capabilities. One of 
the reasons for this success is the increasing number 
of neurons and connections. Sound or image analysis 
via CNNs containing billions of parameters does not 
seem to be a large problem due to increasing volumes 
of computing resources of cloud-based platforms and, 
most significantly, the advent of GPU virtualization 
technologies (e.g., Nvidia GRID). In analysis 
problems for video streams generated by mega-pixel 
CCTV systems, volumes of data increase significantly. 
Though VSaaS technologies (Video Surveillance 
as a Service) have been flourishing, these services 
have usually limited opportunities for video analysis 
reduced to simple functions (e.g., motion detection). 
The best solution to this problem is to place compute 
nodes directly in digital cameras and to transfer data 
mining functions thereto. This would solve scaling 
problems, but should require adaptation of algorithms 
in accordance with limited computational capabilities 
of embedded systems.
The frontal face detection problem is a relatively 
simple classification task, since it can be solved 
even with the use of elementary features such as, for 
example, MCT [5] or binary testing [6]. The main 

difficulty is the reduction of false detection because 
it is impossible to consider all conditions at training 
(e.g., background, lighting conditions) under which 
a real-time algorithm will perform. Therefore, first, 
the use of complex models is not feasible to solve this 
private problem, especially in circumstances when 
computational resources are limited. Second, to build 
a high-end and efficient classifier, it is needed to select 
features keeping balance between the informational 
value of object description and the complexity of 
extraction.
Convolutional neural networks possess high flexibility 
and they can preset the complexity of models by 
changing a number of layers, maps, and sizes of 
convolutional kernels. The capability to fine-tune 
features extracted at each layer, when getting training 
in detection of objects of one particular class, allows 
CNNs to achieve high precision levels in searching 
objects against strongly inhomogeneous backgrounds. 
It should be considered that capabilities of the neural 
networks to generalize the object images are reduced 
with decreasing number of parameters, whereby the 
frequency of type I errors (false detection) has been 
growing. However, this problem can be solved by 
additional check of detections using more complicated 
networks (i.e., those that are capable to provide 
a greater classification accuracy) similarly to the 
structure of the cascade classifier by Viola and Jones.

Cascade structure
This proposed cascade face detector consists of 3 
convolutional neural networks whose architectures are 
shown in Figure 1. Each CNN solves the problem of 
a background/face binary classification and contains 
797 (CNN stage 1), 1,819 (CNN stage 2) and 2,923 
(CNN stage 3) parameters. Rational approximation of 
a hyperbolic tangent is used as an activation function:

( )

( ) ( ) 2 4

21.7159 tanh ,
3

1tanh sgn 1 .
1 1.41645

 = ⋅  
 

 
≈ −  + + + ⋅ 

f x x

y y
y y y

Neurons of subsampling layers have additionally one 
weight and bias. The convolution stride is 1 pixel, 
and the pooling stride is 2 pixels. In CNN1 and CNN2, 
instead of traditional fully connected layers, sparse 
layers are used (similarly to [17]). This gives a 50% 
increase in the speed of the forward pass.

Training process 
When designing the detector, we focused on video 
processing. For the CNN training, aligned face im-
ages were taken from YouTube Faces Database [26]. 
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Background images were sampled from random You-
Tube videos in several stages during the preparation of 
models. Face areas (such as eyes, nose, etc.) were also 
added to the negative samples. 

Fig. 1. Compact convolutional neural networks cascade

The authors have developed a framework for training 
convolutional neural networks supporting multithreaded 
implementations on CPU and integration capability 
for Intel IPP and Intel MKL libraries to speed up 
linear algebraic operations. About 1,000 experiments 
were carried out with models in respect of selection of 
the best CNN architecture and training parameters. 
In our experiments, we aimed to find the minimum 
configuration of a CNN which would be able to classify 
the validation test set with an error below 0.5%. The 
training time varied from several hours to 2-3 days 
depending on the CNN size (for 106 training examples 
on Intel Core i7 CPUs). 
We used grayscale images for the training set. The training 
set was normalized preliminarily in some experiments 
using a procedure combining gamma correction and 
DoG filter [27]. This transformation allowed faces to 
be detected even in faint light. However, these models 
have not been included in the final detector option 
due to the computational complexity of normalization 
procedures.
The CNN configuration was carried out as follows. 
The number of convolutional layers varied from 1 to 4; 
the number of feature maps on each subsequent layer 
was redoubled. Pooling layers retrieved the training 

set from a 2×2 domain with the stride of 2 pixels along 
each axis that decreased the maps area by a factor of 
4. The number of pooling layer maps interconnected 
with convolutional layer maps varied from 2 to 5. 
The number of neurons in the next-to-last layer was 
a multiple of the number of feature maps at the last 
convolutional layer.
The CNN (stage 1) architecture (Fig. 1) is the 
best obtained solution possessing simultaneously 
absolute compactness and reasonable generalization 
perfomanse. CNNs with 2 and 3 maps at the first 
layer (399 and 598 parameters, respectively) 
did not overcome a 0.5% error level. Also, the 
network with a less input size, for example 20×20 
(461 parameters), hasn’t been trained. Note that 
this configuration contains the least number of 
convolution kernels from all CNN architectures 
formerly suggested to solve the face detection 
problem [17-20]. In this case, the probability of 
deviations of a background-containing window is 
100 times higher for CNN stage 1 compared to the 
cascade described in paper [20].
All experiments were conducted mainly with CNNs 
with small numbers of parameters. Therefore, for 
the CNN training a Levenberg-Marquardt algorithm 
was used as a basic training algorithm with a faster 
convergence (but a higher computational cost of 
iteration) compared to widespread methods for 
solving similar optimization problems, such as GD, 
CG, L-BFGS techniques [28]. The training results of 
detector-based CNNs are shown in Table 2.
A test database set used to evaluate the quality of 
different models contained several video clips. Table 
3 shows the comparison of quality for every cascade 
stage and their cooperation on test data.

Table 2. Error levels for detector-based CNNs

Database 
set

Number 
of images, 

thou

Classification error, %

stage 1 stage 2 stage 3

Train
faces – 433
background 

– 585
0.142 0.059 0.047

Validation
faces – 239
background 

– 233
0.484 0.481 0.353

Table 3. Evaluation of cascade stages on test data 

Metrics Stage 1 Stage 2 Stage 3 Cascade

Recall 0.891 0.931 0.945 0.844

Precision 0.179 0.219 0.104 0.990
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3. Test protocol 
This section describes characteristics of 15 modern 
frontal face detection algorithms, which were 
compared to this detector proposed by the authors. It 
also presents test database sets and a proper estimating 
method. 

Algorithms and libraries  
involved in testing

1) A compact convolutional neural networks cascade 
described in paper [1]. Denoted by: CompactCNN.
2) OpenCV 3.0.0 is a popular open source computer 
vision library that provides image processing 
algorithms.
3)  It contains an object detectors framework based 
on the modified Viola-Jones algorithm [3]. It is 
supplied with five frontal face detectors. Four of 
them use Haar-like features and one – local 
binary patterns (LBP). Denoted by: OpenCV-
default, OpenCV-alt, OpenCV-alt2, OpenCV-alt-
tree, OpenCV-lbp..
4) MathWorks MatLab 2013b, Computer Vision 
Toolbox is a package of computer vision algorithms 
for frontal face detectors, including a Haar cascade 
and an LBP cascade. Denoted by: Matlab-CART, 
Matlab-LBP.
5) The algorithm in [7] is based on SURF-
descriptors and uses a logistic regression in the 
capacity of a weak classifier. It is supplied as a 
dynamic library containing two models. Denoted 
by: SURF-24, SURF-32.
6) The algorithm in [6] uses, as one of its features, 
pixel intensity comparison-based object detection 
(a binary test). A source code is provided. Denoted 
by: PICO.
7) The algorithm in [29] is an LBP-based cascade 
trained using OpenCV features based on the AFLW 
benchmark [22]. It is supplied in model format for 
OpenCV object detectors. Denoted by: OpenCV-
Kostinger.
8) The algorithm in [30] is a Haar-based cascade 
trained using OpenCV features. It is supplied in 
model format for OpenCV object detectors. Denoted 
by: OpenCV-Pham.
9) The algorithm in [13] is based on the mixture 
of deformable models and includes models for 
face profile orientations. The source code in the 
Matlab language and two trained detectors are 
provided. Denoted by: FDPL-small, FDPL-large. 
10) The algorithm in [31] is a cascade based on 
support vector machines (SVM). It is supplied in the 
form of a dynamic link library. Denoted by: FDLIB.
Table 4 gives some characteristics for the above 
mentioned algorithms. 

Test database sets
There are many database sets specially designed for 
evaluating face detectors such as FDDB [32], AFW 
[13], MALF [33], IJB-A [34] benchmarks, etc. For 
some sets (e.g., FDDB, MALF, IJB-A) a standardized 
assessment algorithm is provided. Detectors were 
tested on the most popular and, at the same time, more 
complicated benchmarks such as FDDB and AFW, 
which are able to evaluate the efficiency of algorithms 
for the problem of searching faces in the wild.
The Face Detection Data Set and Benchmark (FDDB) 
benchmark is a collection consisting of 2,845 pictures 
(no more than 0.25 megapixels). It contains annotations 
for 5,171 faces with a dimension of 20x20 pixels each. 
For evaluating algorithms, the cross-validation is used 
for 10 image subsets followed by results averaging.

Table 4. Summary table of face detector characteristics

Algorithm Number 
of stages Input size Search 

stride, pixel 
CompactCNN (our) 3 23×27 4

OpenCV-default 25 24×24 1

OpenCV-alt 22 20×20 1

OpenCV-alt2 20 20×20 1

OpenCV-alt-tree 47 20×20 1

OpenCV-lbp 20 24×24 1

Matlab-CART - 20×20 -

Matlab-LBP - 24×24 -

SURF-24 5 24×24 Variable

SURF-32 5 32×32 Variable 

PICO 24 24×24 0.1∙ 
minSize*

OpenCV-Kostinger 24 24×24 1

OpenCV-Pham 31 20×20 1

FDPL-small no 80×80 -

FDPL-large no 150×150 -

FDLIB - 19×19 -
* minSize is the minimum face size

The Annotated Faces in the Wild (AFW) benchmark 
consists of 205 large-scale (0.5-5 megapixels) images 
and contains annotations for 468 faces. This benchmark 
has been developed relatively recently and is mainly used 
for multi-view detectors evaluation.
The quality of the binary classifier may be evaluated 
via ROC and PR (Precision-Recall) curves [35]. In this 
paper, PR curves reflecting the dependence of algorithm 
precision (precision = TP/(TP+FP)) and recall (recall 
= TP/(TP+FN)) are used when varying the threshold 
of the decision rule. However, in practice, especially in 
video processing, readjusting of the threshold performed 



Image Processing, Pattern Recognition

KALINOVSKIY IA, SPITSYN VG… COMPUTER OPTICS 2016; 40(1): 99-111.

104

Fig. 4. Annotations positions in the FDDB benchmark (at the top)  
and the AFW benchmark (at the bottom) generated by algorithm 1

to obtain the best precision-and-recall ratio under 
specific detector operating conditions is a complicated 
problem. Therefore, a fundamentally different approach 
is often used (see OpenCV Object detection framework: 
http://docs.opencv.org/3.0-beta/index.html), in which 
an image region is classified as an object-containing area 
if the number of neighbor detections (minNeighbors) 
inside this area exceeds the given threshold (Fig. 2). This 
method ensures strong regulation of the precision-and-
recall ratio. Besides, it is convenient in setting up because 
of the parameter is integer.
When estimating the quality of the object detection 
algorithm, some difficulties emerge which are 
associated with ambiguous matching of localization 
areas found by the detector (detection) and pointed 
out by an expert (annotation). The following 
assessment criterion proposed for the PASCAL Visual 
Object Classes contest [36] is widely distributed now:

( )
( ) ( )

0,5, 1
, ,

, 0
σ ≥∩ 

σ = δ σ = ∪ 

S A D
otherS A D

where σ is the area overlapping factor; S is the area; 
A, D are respectively annotated and found by the detector 
object localization areas; δ is the assessment of true or false 
detections (each annotation can be matched with only one 
detection; the rest of them  are considered to be false).

Fig. 2. Classifier-generated detections cluster in multiresolution 
image analysis

In case of face detection, a problem of estimation 
is additionally complicated by the following 
reasons (Fig. 3):
a) it is difficult to note an exact face boundary, 
especially for nonfrontal head postures;
b) detectors usually classify rectangular areas; 
this doesn’t fit an oval face shape;
c) each detector defines various localization 
areas, depending on the training set and the 
detection clustering algorithm.

Fig. 3. Face annotations from the AFW benchmark (a white 
frame) and localization areas found by different detectors

This can cause errors in the annotation-
detection comparison when the assessment of 
their mutual arrangement σ turns out to be less 
than 0.5, whereas the face is visually placed 
within a region localized by the algorithm [19]. 
This problem is usually solved by expanding 
detections boundaries [20]. In this paper, 
within a view to correcting the assessment 
of algorithms, annotation boundaries are 
expanded and narrowed according to rules 
described by algorithm 1 (Fig. 4). This allows 
us to use a single assessment procedure for all 
face detectors on different database sets.
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Algorithm 1. Detections assessment 

Input: Xa, Ya, Wa, Ha, Xd, Yd, Wd, Hd are the coordinates of the 
height, width, and coordinates of annotation and detection 
areas, respectively
Output: bool means the truth or false detections

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

for j = -1 to 1 do
for i = -1 to 1 do

for s = -2 to 2 do
if s < 0

scale = 1.1-s

else
scale = 0.95s

end if
X1 = Xa – 0.5∙(scale – 1)∙Wa

Y1 = Ya – 0.5∙(scale – 1)∙Ha

X2 = X1 + scale∙Wa

Y2 = Y1 + scale∙Ha 
if i < 0

X1 = X1 + i∙0.2∙(X2 – X1)
else

X2 = X2 + i∙0.2∙(X2 – X1)
end if
Y1 = Y1 + j∙0.2∙(Y2 – Y1)
X3 = Xb

Y3 = Yb

X4 = X3 + Wb

Y4 = Y3 + Hb

if ¬ (X1 ≥ X4 || X2 ≤ X3 || Y1 ≥ Y4 || Y2 ≤ Y3)
if σ(X1, …, X4, Y1, …, Y4) ≥ 0.5

return true
end if

end if
end for

end for
end for
return false

Annotations modification  
in the FDDB benchmark

Annotations in the FDDB benchmark are represent-
ed by ellipses; this allows us to describe face bound-
aries more precisely compared to rectangular areas. 
However, because of the above reasons, the compar-
ison of elliptic shape annotations with rectangular 
detections results in faulty assessment of the latter 
ones (Fig. 5).

Fig. 5. Test results by CompactCNN on the FDDB benchmark. 
Detections marked in white are considered to be true, detec-
tions marked in black are considered to be false, annotations 
are marked with oval curves, and σ values are marked with 
numbers

In this context, to possibly use the proposed estimating 
method (algorithm 1), the ellipses have been replaced 
by the limiting rectangles as follows:

( ) ( )

( ) ( )

2 2 2 2

2 2 2 2

2 sin ,

2 cos ,

0.5 , 0.5 ,

= + − ⋅ ω

= + − ⋅ ω

= − = −

W a b a

H a b a

X x W Y y H

where X, Y, W, H are the coordinates of the height, 
width, and coordinates of the rectangle, respectively; 
a, b, ω, x, y are the major and minor semi-axes, the 
angle of rotation, and the coordinates of the ellipse 
center, respectively.

Benchmark problems  
and algorithm parameters

We have considered three tasks: detection of small 
(from 20×20 pixels), medium (from 40×40 pixels) and 
big (from 80×80 pixels) faces. We calculated proper PR 
curves for each detector, depending on the minNeighbors 
parameter. The algorithms were totally benchmarked 
with 9 parameter values sets as follows:
1) minNeighbors – {1, 2, 3} (for the case 1, the detection 
algorithm in terms of recall prevails; for the case 3 – the 
detection algorithm in terms of precision prevails);
2) the minimum size of face (minSize) and the scaling 
factor connected with them (scaleFactor) used in 
constructing an image pyramid– {(20; 1.05); (40; 1.1), 
(80; 1.1)}.
Note 1: During testing, around every image makes a zero 
border with size 50 pixels.
Note 2: For the Matlab, PICO and FDLIB detectors, no 
minNeighbors parameter is provided. However, it is possible 
to control only the threshold of the decision rule (threshold). 
The threshold for these detectors was set as follows:
a) Matlab, PICO: threshold = 2 + minNeighbors;
b) FDLIB: threshold = 2 ∙ minNeighbors.
Note 3: The FDPL detector provides no interface to 
control the minNeighbors, minSize and scaleFactor 
parameters, so it was tested only with default settings.
Note 4: The FDLIB detector provides no interface to 
control the inSize and scaleFactor parameters, so testing 
was performed only for 3 values of the threshold.
Note 5: The CompactCNN, SURF and OpenCV-
Kostinger detectors were taught on face patterns cut 
precisely across the width of eyes and in line of eyes and 
chin. When training other models, a wider facial area was 
obviously used, including a forehead. As a result, detectors 
of the second group recognize smaller faces at a fixed 
minSize value. In this regard, with a view of meaningful 
comparison, a proportional factor for minSize was 
empirically selected to be used during initializing the 
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SURF and OpenCV-Kostinger detectors:
minSize’ = 0.75 ∙ minSize.
In this case, face localization areas detected by these 
algorithms were expanded:
X’ = X – 0.2W, Y’ = Y – 0.3H, W’ = 1.4W, H’ = 1.6H,
where X, Y, W, H are the coordinates of 
the height, width, and coordinates of the upper left 
corner of a limiting rectangular, respectively.
Note 6. Values of additional parameters specific for 
each individual algorithm are shown in Table 5.

Table 5. Specific detector parameters 

Algorithm Parameter Value

CompactCNN T1, T2, T3 -1.5, -1.25, -1.0

OpenCV
useOptimized true

useOpenCL false

SURF
step 1

fast true

PICO stridefactor 0.1

4. Results and benchmarks 
The test results for 16 frontal face detectors on the 
AFW and DDB benchmarks (all data resulting from 
benchmarks are available at https://github.com/
Bkmz21/FD-Evaluation) are given below. The 
comparison of all algorithms is performed at equal 
parameter sets, and the used test protocol is as close 
to real-time operating conditions as possible. This 
distinguishes these performed tests from existing 
performance evaluations of some algorithms (SURF, 
PICO, OpenCV Kstinger, FDPL) performed by ROC 
analysis, which reflects the ratio of true-to-false 
detection levels. However, it does not give an indication 
of algorithm behavior when choosing the best value of 
the threshold of the decision rule.
Figure 6 shows PR curves obtained when solving the 
face detection problem for faces with a dimension 
of 40×40 pixels. On the FDDB benchmark, the best 
results were shown by the OpenCV-Kstinger detector. 
The CompactCNN detector has a similar recall level 
but less precision. On the AFW benchmark, followed 
far behind thereof by recall ratio (R = 0.9), the 
leading role is played by the FDPL-small detector. 
However, the FDDB benchmark detects only 73% of 
the total number of objects in photos, because it is not 
designed for detecting small-size and blurred images. 
The CompactCNN cascade and the OpenCV-Kstinger 
cascade on the AFW benchmark are comparable with 
each other in their operation quality. Moreover, the 
CompactCNN detector on these benchmarks is of 
better precision compared to all Viola-Jones cascade 
detectors added to the OpenCV 3.0.0 library.

Quality assessment of face detectors
It is easier to assess the quality of binary classifiers 
using the F-measure that is defined as a harmonic 
mean of recall (R) and precision (P): 

( ) [ ]
11 11 , 0, 1 ,F

P R

−
 = α + − α α ∈ 
 

where α is a weighting factor.

Fig. 6. The PR curve graphics for the face detection problem 
for minimum face size of 40×40 pixels on the FDDB bench-
mark and the AFW benchmark
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The mean value of F-measures calculated along 
the PR curve is accepted as the single detector 
assessment for each benchmark (Table 6). Besides, 
an individual level α is set up for all PR curve points 
(Table 7), since precision and recall are not always of 
equal value for different scenarios of using detectors 
(for example, in biometric systems, precision is of 
higher priority).

Table 6. Evaluation of face detectors on benchmarks

 FDDB-20 FDDB-40 FDDB-80 AFW-20 AFW-40 AFW-80 F
Compact 

CNN 

(our)

0.854 0.850 0.814 0.717 0.778 0.789 0.800

OpenCV-

default
0.630 0.739 0.761 0.143 0.294 0.494 0.510

OpenCV-

alt
0.806 0.837 0.803 0.462 0.662 0.754 0.721

OpenCV-

alt2
0.751 0.816 0.798 0.319 0.552 0.712 0.658

OpenCV-

alt-tree
0.665 0.597 0.531 0.475 0.402 0.398 0.511

OpenCV-

lbp
0.697 0.778 0.763 0.225 0.420 0.578 0.577

Matlab-

CART
0.795 0.831 0.794 0.441 0.647 0.752 0.710

Matlab-

LBP
0.756 0.794 0.756 0.327 0.532 0.634 0.633

SURF-24 0.751 0.833 0.814 0.324 0.631 0.671 0.671

SURF-32 0.738 0.840 0.824 0.269 0.492 0.548 0.619

PICO 0.810 0.821 0.798 0.514 0.617 0.686 0.708

OpenCV-

Koestinger
0.873 0.863 0.814 0.723 0.780 0.797 0.808

OpenCV-

Pham
0.826 0.823 0.774 0.586 0.692 0.735 0.739

FDPL-

small
0.842 0.842 0.842 0.869 0.869 0.869 0.856

FDPL-

large
0.547 0.547 0.547 0.715 0.715 0.715 0.631

FDLIB 0.574 0.574 0.574 0.358 0.358 0.358 0.466

Table 7. Values of parameter α when calculating  
the F-measure

min 
Neighbors

α Explanation

1 0.2 Detectors with high recall levels are 
prioritized

2 0.5 Precision and recall are of equal 
value 

3 0.8 Detectors with high precision levels 
are prioritized

For each task, Table 8 shows space allocation 
between the detectors in relation to descending their 
F-measures and a relative delay behind the winning 
side (percentage difference) – ∆F. The mean value 
∆F is offered as a relative general assessment of 

algorithm quality on all benchmarks. The assessment 
F∆  shows how the F-measure level of the algorithm 

is comparable to the best solution. According to the 
above criterion, the ranking result for face detectors 
is given in Figure 7. The best detector is the FDPL-
small detector (though not for all benchmarks). This 
is reflected by the assessment 1%F∆ = − . The detector 
is able to search either frontal or profiled faces 
that ensure recall criterion leadership on the AFW 
benchmark. It is followed by the OpenCV-Kostinger 
detector that is slower by 5.44% of percentage points. 
The CompactCNN detector ranks third, being slower 
than the FDPL-small detector by 6.36% and the 
OpenCV-Kostinger detector – by 0.92% of percentage 
points.

Table 8. Rating of face detectors by scores

 FDDB-20 FDDB-40 FDDB-80 AFW-20 AFW-40 AFW-80 ,%F∆

Compact 

CNN 

(our)

2 (-2.18) 2 (-1.51) 3 (-3.33) 3 (-17.5) 3 (-10.5) 3 (-9.21) -7.36

OpenCV-

default
13 (-27.8) 13 (-14.4) 9 (-9.62) 16 (-83.5) 16 (-66.2) 14 (-43.2) -40.78

OpenCV-

alt
6 (-7.67) 5 (-3.01) 4 (-4.63) 8 (-46.8) 6 (-23.8) 4 (-13.2) -16.53

OpenCV-

alt2
9 (-14) 10 (-5.45) 5 (-5.23) 13 (-63.3) 10 (-36.5) 8 (-18.1) -23.75

OpenCV-

alt-tree
12 (-23.8) 14 (-30.8) 13 (-36.9) 7 (-45.3) 14 (-53.7) 15 (-54.2) -40.81

OpenCV-

lbp
11 (-20.2) 12 (-9.85) 8 (-9.38) 15 (-74.1) 13 (-51.7) 12 (-33.5) -33.11

Matlab-

CART
7 (-8.94) 7 (-3.71) 6 (-5.7) 9 (-49.3) 7 (-25.5) 5 (-13.5) -17.77

Matlab-

LBP
8 (-13.4) 11 (-8) 10 (-10.2) 11 (-62.4) 11 (-38.8) 11 (-27) -26.63

SURF-24 9 (-14) 6 (-3.48) 3 (-3.33) 12 (-62.7) 8 (-27.4) 10 (-22.8) -22.28

SURF-32 10 (-15.5) 4 (-2.67) 2 (-2.14) 14 (-69) 12 (-43.4) 13 (-36.9) -28.27

PICO 5 (-7.22) 9 (-4.87) 5 (-5.23) 6 (-40.9) 9 (-29) 9 (-21.1) -18.04

OpenCV-

Koestinger
1 (0) 1 (0) 3 (-3.33) 2 (-16.8) 2 (-10.2) 2 (-8.29) -6.44

OpenCV-

Pham
4 (-5.38) 8 (-4.63) 7 (-8.08) 5 (-32.6) 5 (-20.4) 6 (-15.4) -14.41

FDPL-

small
3 (-3.55) 3 (-2.43) 1 (0) 1 (0) 1 (0) 1 (0) -1.00

FDPL-

large
15 (-37.3) 16 (-36.6) 12 (-35) 4 (-17.7) 4 (-17.7) 7 (-17.7) -27.03

FDLIB 14 (-34.3) 15 (-33.5) 11 (-31.8) 10 (-58.8) 15 (-58.8) 16 (-58.8) -46.00

* in parentheses, the percentage difference ∆F is given with 
the algorithm having the maximal F-measure for each of the 
tasks.
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Fig. 7. Detectors ranking according to assessment of F∆  

Besides, the classifiers were evaluated using the 
Friedman test that showed lack of statistically 
significant differences in performance quality between 
the CompactCNN, OpenCV K stinger and FDPL-
small detectors at significance level of 0.05. Note that 
the FDPL-small and OpenCV K stinger algorithms 
were trained on megapixel pictures from the AFLW 
benchmark, whereas for training the CompactCNN 
detector we used frames from random YouTube 
videos. Which is why, the designed detector can gain 
the advantage in problems of face search within videos, 
because in this case the processed data are comparable, 
to a far greater degree, to statistical distribution of the 
training set.

Performance evaluation of face detectors 
The computational efficiency is an important 
characteristic of object detectors especially when 
solving real-time tasks and processing big data. Under 
such conditions, cascade structured detectors have the 
advantage, since they are able to quickly eliminate most 
of the image that doesn’t contain any target objects. 
For example, the first stage of the Haar-like OpenCV-
alt cascade consisting of 3 weak classifiers requires 26 
arithmetic operations to perform classification (when 
using an integral matrix and rectangular parameters). 
The algorithmic complexity of CNNs is much higher 
because of necessity for computing output signals for 
several thousands of neurons. For example, to obtain 
the response map for CNN stage 1 (3,905 neurons, Fig. 

1), we need ≈340∙106 operations (with a window stride 
of 4 pixels) on the image with resolution of 1,280×720 
pixels, while requiring only ≈23∙106 for the OpenCV-
alt cascade (with the window stride of 1 pixel).
In addition to the computational complexity, precision 
and the number of strong classifiers have a very 
significant effect on performance. In worst cases, 
the detector performance depends on the number of 
cascade stage when the image is completely filled with 
target objects. The total number of weak classifiers in 
the 22-staged OpenCV-alt detector is 2,135. Thus, in 
the worst case it will require ≈16∙109 operations, while 
the CompactCNN detector will require only ≈1.5∙109 
operations.
Probability distribution of type I errors by cascade 
stages determines the detector performance speed 
in normal operation conditions (i.e. a level between 
processing of an absolutely black image and a fully 
face-filled image). The Haar-like cascades from the 
OpenCV detector reject 60-70% of positions of a 
sliding window at the first stage, using from 3 to 9 
features. The detector [7] based on more complex 
features – SURF-descriptors – rejectes 95% of 
windows, however at the same time, it produces an 
increasingly larger number of computations. The 
CompactCNN detector extracting high-level features 
optimized for face detection is able to reject, already 
at the first stage, more than 99.99% of all window 
positions at a zero threshold of the decision rule [1]. 
Thus, its operation speed weakly depends on the 
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image content.
The microarchitecture of modern processors 
is superscalar. It contains blocks of reordering 
instructions and renaming registers, and the control 
devices are able to perform many various scalar and 
vector data operations. In this regard, the algorithm 
performance capacity depends not only on its 
computational complexity, but also on its structure 
(conditional constructs, order of memory assess, etc.), 
data type and instructions sets, as well as on the ability 
to be efficiently vectored and paralleled.
The decision trees are base elements for most detectors 
built with the help of a boosting procedure (see Table 
1). Objects are searched by the sliding window where 
features are computed at different fixed points that 
is not preferable from the point of view of loading 
values in cache. A tree traversal procedure is poorly 
vectored due to the relationship between results and 
the transition sequence. In this regard, it is quite 
difficult to build an efficient algorithm to compute 
detectors of this type that takes advantages of SIMD 
extensions of modern CPUs and massively parallel 
GPU architectures. Many of papers are dedicated to 
the solution of this problem [37, 38].
From the point of view of the computational 
architecture, CNNs are much more efficient than Viola-
Jones algorithms and their modern modifications: 
1) The CNN response map can be computed without 
using the sliding window by applying a linear operation 
of correlation with filter sets, pooling operations, 
and non-linear by-pixel transformation [39] to the 
total image. Due to this property, data are read by 
continuous data memory units. This allows efficiently 
use a CPU cache.
2) There are several dozens of data operations 
(without branches inside iterations) for each reading 
operation.
3) By its definition, a neural network is a massively 
parallel algorithm, so it can be easily vectored and 
paralleled. 
The above mentioned specific features of CNNs 
are essentially important when computations are 
transferred to GPUs. The Graphic processing units 
(GPUs) allow us to fully disclose all advantages of 
natural parallelism of CNNs and they are supported in 
hardware for two-dimensional database sets.
The main disadvantage of CNNs is the fact that it 
is necessary to store large volumes of intermediate 
computations (features maps). This increases the 
required memory space and reduces the efficiency of 
multithreaded implementation under insufficient size 
of CPU’s memory cache. 
The CompactCNN detector has been implemented 
using 3 technologies: SIMD extension of x86 processor 

family (for each of 3 instructions sets – SSE, AVX, AVX2 
– supported by microarchitectures of Intel Sandy/Ivy 
Bridge and Haswell/Broadwell processors), Nvidia 
CUDA, and OpenCL. The calculations are carried 
out using single precision, and the precision-recall 
characteristic is identical for all implementations.
Figure 8 gives the performance comparison for the 
face detectors involved in testing. Measurements were 
made for a single execution mode on Intel Core i7-
3610QM CPU (3.1 GHz) while processing the first 
image subset from the FDDB benchmark (minSize – 
40×40, scaleFactor – 1.1, minNeighbors – 2, with no 
frame added). Program files and libraries for all de-
tectors, except SURF and FDLIB, are 64-bit ones. We 
used the C++ compiler incorporated with IDE Mic-
rosoft Visual Studio Community 2013, ОС Microsoft 
Windows 8.1 (64-bit).

Fig. 8. Detectors ranking by operation speed for the FDDB-40 
benchmark

Due to the original algorithm used for computing CNNs 
and optimizing the software code with the help of the 
vector intrinsic functions, and with due consideration of 
limited number of logical registers and specific features 
of Intel CPU microarchitectures, the CompactCNN 
detector demonstrates the outstanding data processing 
speed (during testing, we used the implementation 
optimized by AVX intrinsic functions).

Conclusion
The test results for 16 frontal view face detectors show 
that the proposed detector based on the compact 
CNN cascades ranks third by its F-measure level being 
averagely 7.4% behind the best solution. However, it 
takes the leading position in its data processing speed, 
thus improving the previous record by 2.3 times 
(PICO) and being 1140 times (FDPL-small) and 10 
times (OpenCV-Kstinger) as greater as other detectors 
of better quality.
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The designed cascade detector consists of only 3 
stages. In addition, 99.99% of background-containing 
windows are rejected already at the first stage. This 
factor substantially reduces the dependence of the 
detector speed on image content [1]. Because of 
availability of implementations for 3 computing 
technologies, including OpenCL, the CompactCNN 
detector can be launched basically on any device. For 
this purpose, the implementation for Intel CPU and 
Nvidia GPU has been highly optimized with regard to 
specific features of processors microarchitectures. The 
cascade of small CNNs proved to be a very effective 
solution for the frontal face detection problem and 
made it possible, for the first time, to process a 4K 
Ultra HD high-resolution video stream even on low-
power computing devices [1]. 
The research is carried out at Tomsk Polytechnic 
University within the framework of Tomsk Polytechnic 
University Competitiveness Enhancement 
Program.
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